FARNING NEAR-OPTIMAL BROADCASTING INTERVALS IN DECENTRALIZED MULTI-AGENT SYSTEMS USING ONLINE LEAST-SQUARE POLICY ITERATION

Ivana Palunko

LARIAT - Laboratory for intelligent autonomous systems University of Dubrovnik

Workshop on Control of Dynamical Systems 15. June, 2021. Dubrovnik

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

< 🗇 🕨 LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

.

Cooperative and Decentralized Systems

Multi-agent systems

► Link

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSP

æ

Problem

Agent Dynamics

• consider *N* heterogeneous linear agents given by

$$\dot{\xi}_i = A_i \xi_i + B_i u_i + \omega_i,$$

$$\zeta_i = C_i \xi_i,$$
(1)

where $\xi_i \in \mathbb{R}^{n_{\xi_i}}$ is the state, $u_i \in \mathbb{R}^{n_{u_i}}$ is the input, $\zeta_i \in \mathbb{R}^{n_{\zeta}}$ is the output of the *i*th agent, $i \in \{1, 2, ..., N\}$, and $\omega_i \in \mathbb{R}^{n_{\xi_i}}$ reflects exogenous disturbances and/or modeling uncertainties

Problem

Agent Dynamics

• consider *N* heterogeneous linear agents given by

$$\dot{\xi}_i = A_i \xi_i + B_i u_i + \omega_i,$$

$$\zeta_i = C_i \xi_i,$$
(1)

where $\xi_i \in \mathbb{R}^{n_{\xi_i}}$ is the state, $u_i \in \mathbb{R}^{n_{u_i}}$ is the input, $\zeta_i \in \mathbb{R}^{n_{\zeta}}$ is the output of the *i*th agent, $i \in \{1, 2, ..., N\}$, and $\omega_i \in \mathbb{R}^{n_{\xi_i}}$ reflects exogenous disturbances and/or modeling uncertainties

a common decentralized policy is

$$u_i(t) = -K_i \sum_{j \in \mathcal{N}_i} (\zeta_i(t) - \zeta_j(t)), \qquad (2)$$

where
$$K_i$$
 is an $n_{u_i} \times n_{\zeta}$ gain matrix

伺下 イヨト イヨト

Problem

Closed-Loop Dynamics

- define $\xi := (\xi_1, \dots, \xi_N)$, $\zeta := (\zeta_1, \dots, \zeta_N)$ and $\omega := (\omega_1, \dots, \omega_N)$
- utilizing the Laplacian matrix L of the communication graph \mathcal{G} , we reach

$$\begin{split} \dot{\xi}(t) &= A^{\mathrm{cl}}\xi(t) + A^{\mathrm{cld}}\xi(t-\mathcal{O}) + \omega(t), \\ \zeta &= C^{\mathrm{cl}}\xi, \end{split}$$

with

$$egin{aligned} & A^{ ext{cl}} = ext{diag}(A_1,\ldots,A_N), & A^{ ext{cld}} = [A^{ ext{cld}}_{ij}], \ & A^{ ext{cld}}_{ij} = -I_{ij}B_iK_iC_j, & C^{ ext{cl}} = ext{diag}(C_1,\ldots,C_N), \end{aligned}$$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

A (10) A (10)

Optimal Intermittent Feedback

Optimal Intermittent Feedback

- $t_i^j \in \mathcal{T}$, $i \in \mathbb{N}$ broadcasting instants of the *j*th agent
- asynchronous communication
- $x_i := (\ldots, \zeta_i \zeta_j, \ldots)$, where $i \in \{1, \ldots, N\}$ and $j \in \mathcal{N}_i$

・ロト ・ 同ト ・ ヨト ・ ヨト …

Optimal Intermittent Feedback

Optimal Intermittent Feedback

- $t_i^j \in \mathcal{T}$, $i \in \mathbb{N}$ broadcasting instants of the *j*th agent
- asynchronous communication
- $x_i := (\ldots, \zeta_i \zeta_j, \ldots)$, where $i \in \{1, \ldots, N\}$ and $j \in \mathcal{N}_i$

Problem

For each $j \in \{1, ..., N\}$, minimize the following cost function that captures performance vs. energy trade-offs

$$\mathbb{E}_{\omega}\left\{\sum_{i=1}^{\infty}(\gamma_{j})^{i}\left[\int_{t_{j-1}^{i}}^{t_{j}^{i}}(x_{j}^{\top}P_{j}x_{j}+u_{j}^{\top}R_{j}u_{j})\mathrm{d}t+S_{j}\right]\right\}$$
(3)

for the *j*th agent of MAS (1)-(2) over all sampling policies τ_j^j and for all initial conditions $x_j(t_0) \in \mathbb{R}^{n_{x_j}}$.

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

The goal of RL is to solve a stochastic discrete-time optimal control problem

Markov decision process (MDP) $(\mathcal{X}, \mathcal{A}, f, \rho)$,

- $\mathcal{X} \subseteq \mathbb{R}^{n_x}$ is the state space of the process,
- $\mathcal{A} \subseteq \mathbb{R}^{n_{\alpha}}$ is the action space,
- $f: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \to [0, \infty)$ is the transition probability function of the process,
- $\rho: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \to \mathbb{R}$ is the reward function

・ロト ・回 ト ・ ヨト ・ ヨト

• A deterministic Markov Decision Process (MDP)

 $x_{k+1} = f(x_k, a_k)$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

Learning broadcasting intervals in decentralized MAS using LSP

イロン イボン イヨン

• A deterministic Markov Decision Process (MDP)

 $x_{k+1} = f(x_k, a_k)$

• Reward function $\rho: X \times U \to \mathbb{R}$

 $\mathbf{r}_{k+1} = \rho(\mathbf{x}_k, \mathbf{a}_k, \mathbf{x}_{k+1})$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

earning broadcasting intervals in decentralized MAS using LSF.

• A deterministic Markov Decision Process (MDP)

$$x_{k+1} = f(x_k, a_k)$$

• Reward function $\rho: X \times U \to \mathbb{R}$

$$\mathbf{r}_{k+1} = \rho(\mathbf{x}_k, \mathbf{a}_k, \mathbf{x}_{k+1})$$

• The controller chooses actions according to its policy $h: X \to U$

$$a_k = h(x_k)$$

э

• The return R

$$R^{h}(x_{0}) = \mathbb{E}\left\{\sum_{k=0}^{\infty}\gamma^{k}\rho(x_{k},h(x_{k}),x_{k+1})\right\}$$

where $\gamma \in (0, 1]$ is the discount factor

Any policy h^* that attains the minima in this equation is optimal

$$V^*(x_0) := \min_h V^h(x_0), \quad \forall x_0.$$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

・ロト・合わト・モート・モート・モート・モーク

Q-learning

- Q-functions $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ fix the initial action.
- Once Q* is available, an optimal (greedy) policy can be computed easily by selecting at each state an action with the smallest optimal Q* value:

 $h^*(x) \in \arg\min_a Q^*(x, a).$

 The state value functions can be expressed in terms of Q-functions

$$V^{h}(x) = Q^{h}(x, h(x)),$$

 $V^{*}(x) = \min_{a} Q^{*}(x, a) = Q^{*}(x, h^{*}(x)).$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

.

\sim	11 J.	I		
<u>()</u> _	ITe	rat	IOr	٦
				1

Bellman equations

$$Q^{h}(x, \alpha) = \mathbb{E}\left\{\rho(x, \alpha, x') + \gamma Q^{h}(x', h(x'))\right\},$$

$$Q^{*}(x, \alpha) = \mathbb{E}\left\{\rho(x, \alpha, x') + \gamma \min_{\alpha'} Q^{*}(x', \alpha')\right\}.$$
(5)

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

Learning broadcasting intervals in decentralized MAS using LSP

Policy

• The optimal policy (greedy policy in Q^*)

 $h(x) \in \arg \max_{U} Q^*(x, U)$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

Learning broadcasting intervals in decentralized MAS using LSP

イロト イポト イヨト イヨト

Policy

• The optimal policy (greedy policy in Q*)

 $h(x) \in \arg \max_{u} Q^*(x, u)$

- Policy evaluation
 - at every iteration I solving the Bellman equation for Q^{h_l} of the current policy h_l

< ロト < 同ト < ヨト < ヨト

• The optimal policy (greedy policy in Q^*)

$$h(x) \in rg\max_{u} Q^*(x, u)$$

- Policy evaluation
 - at every iteration *I* solving the Bellman equation for Q^{h_I} of the current policy h_l
- Policy improvement

$$h_{l+1}(x) \in rg\max_{u} Q^{h_l}(x, u)$$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

< 🗇 🕨 LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

.

Approximation of Q

 In continuous spaces, policy evaluation cannot be solved exactly

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

Approximation of Q

- In continuous spaces, policy evaluation cannot be solved exactly
- Linearly parametrized Q-function approximator Q
 - *n* basis function (BFs) $\phi_1, \ldots, \phi_n : X \times U \to \mathbb{R}$
 - *n* dimensional parameter vector θ

$$\hat{Q} = \sum_{l=1}^{n} \phi_l(x, u) \theta_l = \phi^T(x, u) \theta$$

where $\phi(x, u) = [\phi_1(x, u), ..., \phi_n(x, u)]^T$.

Approximation of Q

- In continuous spaces, policy evaluation cannot be solved exactly
- Linearly parametrized Q-function approximator Q
 - *n* basis function (BFs) $\phi_1, \ldots, \phi_n : X \times U \to \mathbb{R}$
 - *n* dimensional parameter vector θ

$$\hat{Q} = \sum_{l=1}^{n} \phi_l(x, u) \theta_l = \phi^T(x, u) \theta$$

where $\phi(x, u) = [\phi_1(x, u), ..., \phi_n(x, u)]^T$.

• Control action u is scalar which is bounded to an interval $U = \begin{bmatrix} u_L & u_H \end{bmatrix}$.

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

Approximation of Q

- In continuous spaces, policy evaluation cannot be solved exactly
- Linearly parametrized Q-function approximator Q
 - *n* basis function (BFs) $\phi_1, \ldots, \phi_n : X \times U \to \mathbb{R}$
 - *n* dimensional parameter vector θ

$$\hat{Q} = \sum_{l=1}^{n} \phi_l(x, u) \theta_l = \phi^T(x, u) \theta$$

where $\phi(x, u) = [\phi_1(x, u), ..., \phi_n(x, u)]^T$.

- Control action u is scalar which is bounded to an interval $U = \begin{bmatrix} u_L & u_H \end{bmatrix}$.
- Chebyshev polynomials of the first kind

$$\psi_0(\bar{u}) = 1,$$

 $\psi_1(\bar{u}) = \bar{u},$
 $\psi_{j+1}(\bar{u}) = 2\bar{u}\psi_j(\bar{u}) - \psi_{j-1}(\bar{u}),$

Least Square Policy Iteration (LSPI)

- define $\tau(t_i) := t_{i+1} t_i$
- decision $\tau(t_i) \in \mathcal{A}$ is given by

$$\tau(t_i) = h_{\kappa}(x(t_i)),$$

where

$$h_{\kappa}(x(t_{i})) = \begin{cases} \text{u.r.d.} \in \mathcal{A} \\ h_{\kappa}(x(t_{i})) \end{cases} \text{ of } \end{cases}$$

every ε iterations, otherwise,

・ロット (日) (日) (日)

Least Square Policy Iteration (LSPI)

- define $\tau(t_i) := t_{i+1} t_i$
- decision $\tau(t_i) \in \mathcal{A}$ is given by

$$\tau(t_i) = h_{\kappa}(x(t_i)),$$

where

$$h_{\kappa}(x(t_i)) = \begin{cases} \text{ u.r.a. } \in \mathcal{A} & \text{ every } \varepsilon \text{ iterations,} \\ h_{\kappa}(x(t_i)) & \text{ otherwise,} \end{cases}$$

where "u.r.a." stands for "uniformly chosen random action" and yields exploration every ε steps while $h_{\kappa}(x(t_i))$ is the policy obtained according to

$$h_{\kappa}(x(t_i)) \in \arg\max_{U} \hat{Q}(x(t_i), \tau(t_i))$$
 (6)

Least Square Policy Iteration (LSPI)

• α_{κ} is updated every $\kappa \ge 1$ steps from the projected Bellman equation for model-free policy iteration

$$\Gamma_i \alpha_{\kappa} = \gamma \Lambda_i \alpha_{\kappa} + Z_i,$$

where γ is from (3) and

$$\Gamma_{0} = \beta_{\Gamma} I, \quad \Lambda_{0} = \mathbf{0}, \quad z_{0} = \mathbf{0},$$

$$\Gamma_{i} = \Gamma_{i-1} + \phi(x(t_{i}), \tau(t_{i}))\phi(x(t_{i-1}), \tau(t_{i-1}))^{\top},$$

$$\Lambda_{i} = \Lambda_{i-1} + \phi(x(t_{i}), \tau(t_{i}))\phi(x(t_{i}), h(x(t_{i+1})))^{\top},$$

$$z_{i} = z_{i-1} + \phi(x(t_{i}), \tau(t_{i}))r(t_{i}),$$

where Γ_i , Λ_i and z_i are updated at every iteration step *i*

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

- **A B A B A B A**

Least Square Policy Iteration (LSPI)

• α_{κ} is updated every $\kappa \ge 1$ steps from the projected Bellman equation for model-free policy iteration

$$\Gamma_i \alpha_{\kappa} = \gamma \Lambda_i \alpha_{\kappa} + Z_i,$$

where γ is from (3) and

$$\begin{split} & \Gamma_{0} = \beta_{\Gamma} I, \quad \Lambda_{0} = \mathbf{0}, \quad z_{0} = \mathbf{0}, \\ & \Gamma_{i} = \Gamma_{i-1} + \phi \big(x(t_{i}), \tau(t_{i}) \big) \phi \big(x(t_{i-1}), \tau(t_{i-1}) \big)^{\top}, \\ & \Lambda_{i} = \Lambda_{i-1} + \phi \big(x(t_{i}), \tau(t_{i}) \big) \phi \big(x(t_{i}), h(x(t_{i+1})) \big)^{\top}, \\ & z_{i} = z_{i-1} + \phi \big(x(t_{i}), \tau(t_{i}) \big) r(t_{i}), \end{split}$$

where Γ_i , Λ_i and z_i are updated at every iteration step *i*

- new α_{κ} improves the Q-function
- improved policies (in the sense of Problem) are obtained from (6)

Bellman equations (4) and (5) can be written as

$$Q^h = T^h(Q^h), \qquad Q^* = T(Q^*).$$

Contraction

Mapping T, as well as T^h , is a contraction with factor $\gamma < 1$ in L_{∞} -norm

$$\|T(Q) - T(Q')\|_{\infty} \leq \gamma \|Q - Q'\|_{\infty}.$$

T has the unique fixed point Q^* .

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSP

イロト イポト イヨト イヨト

An arbitrary initial Q-function Q_0 can be iterated to reach Q^* :

 $Q_{l+1} = T(Q_l),$

which is known as the Q-iteration.

Contraction

$$\left\|\boldsymbol{Q}_{l+1}-\boldsymbol{Q}^*\right\|_{\infty} \leq \gamma \left\|\boldsymbol{Q}_{l}-\boldsymbol{Q}^*\right\|_{\infty}$$

Estimate of state-action value function in policy iteration

$$Q^{h_k}(x, a) = \mathbb{E}\Big\{\rho(x, a, x') + \gamma Q^{h_k}(x', h_k(x'))\Big\}.$$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

Approximated policy iteration converts to

$$\alpha_{l+1} = (P \circ T \circ F)(\alpha_l),$$

where $F(\alpha)$ equals the right-hand side of

$$\hat{Q}(\boldsymbol{x}(t_i), \tau(t_i)) = \Phi^{\top} \big(\boldsymbol{x}(t_i), \tau(t_i) \big) \alpha_{\kappa},$$

while the projection P(Q) equals ΦQ when orthonormal bases (e.g., Chebyshev polynomials) are employed.

.

The expansiveness coefficient of $P \circ T \circ F$ in

 $\alpha_{l+1} = (P \circ T \circ F)(\alpha_l),$

is upper bounded by

$$\mathsf{E} := \gamma \sqrt{2}^{n_x + n_a} M_b^{n_x} N_b^{n_a}.$$

Theorem

If E < 1, than the composite mapping $P \circ T \circ F$ built upon Chebyshev polynomials is a contraction, that is,

 $\alpha_{l+1} = (P \circ T \circ F)(\alpha_l),$

converges to a unique fixed point.

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

Convergence

Near-Optimality Bounds

The approximate policy evaluation is accurate to within δ in the \mathcal{L}_∞ sense, that is, if

$$\|\hat{Q}^{h_k}-Q^{h_k}\|_{\infty}\leq \delta, \qquad \forall k\in\{1,2,\ldots\},$$

then in the limit as $k \to \infty$ the following near-optimality bound holds

$$\limsup_{k o\infty}\|\hat{\mathcal{Q}}^{h_k}-\mathcal{Q}^*\|_\infty\leq rac{2\gamma\delta}{(1-\gamma)^2}.$$

Moreover, if the sequence of obtained policies converges to some \tilde{h} , then the following tighter bound holds:

$$\|\hat{Q}^{\tilde{h}} - Q^*\|_{\infty} \le \frac{2\gamma\delta}{1-\gamma}.$$

Agent Interconnections

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSP

Crazyflie model identification

Transfer function form

$$\frac{X(s)}{\Phi(s)} = \frac{K_T}{s(T_T s + 1)} e^{-T_d s}$$

where $K_T = 0.944$, $T_T = 0.297$ and $T_d = 0.45$

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSP

Crazyflie model identification

Transfer function form

$$\frac{X(s)}{\Phi(s)} = \frac{K_T}{s(T_T s + 1)} e^{-T_d s}$$

where $K_T = 0.944$, $T_T = 0.297$ and $T_d = 0.45$

State-space form

$$\dot{\xi}(t) = A\xi(t) + Bu(t) + \omega$$
$$\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -T_s \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ K_s \end{bmatrix} \phi(t) + \omega,$$
where $K_s = 3.17$ and $T_s = 3.37$

Crazyflie model identification

Transfer function form

$$\frac{X(s)}{\Phi(s)} = \frac{K_T}{s(T_T s + 1)} e^{-T_d s}$$

where $K_T = 0.944$, $T_T = 0.297$ and $T_d = 0.45$

State-space form

$$\begin{aligned} \dot{\xi}(t) &= A\xi(t) + Bu(t) + \omega \\ \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ 0 & -T_s \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ K_s \end{bmatrix} \phi(t) + \omega, \end{aligned}$$

where $K_s = 3.17$ and $T_s = 3.37$ • Communication delay is d = 0.45 s

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

A 3 4 3 4 3 4

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSP

ъ

MAS with Crazyflie - Experimental validation

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSP

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MAS with Crazyflie - Experimental validation

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

- Lucian Busoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, Ivana Palunko, Reinforcement learning for control: Performance, stability, and deep approximators, Annual Reviews in Control, Volume 46, 2018, Pages 8-28
- Palunko, I, Tolić, D, Prkačin, V. Learning near-optimal broadcasting intervals in decentralized multi-agent systems using online least-square policy iteration. IET Control Theory Appl. 2021; 15: 1054–1067

Thank you for your attention! Questions?!

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems

LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

イロト イポト イヨト イヨト