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Cooperative and Decentralized Systems

Multi-agent systems
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Problem

Agent Dynamics

consider N heterogeneous linear agents given by

ξ̇i = Aiξi + Biui + ωi ,

ζi = Ciξi , (1)

where ξi ∈ Rnξi is the state, ui ∈ Rnui is the input, ζi ∈ Rnζ is
the output of the ith agent, i ∈ {1, 2, . . . ,N}, and ωi ∈ Rnξi

reflects exogenous disturbances and/or modeling
uncertainties

a common decentralized policy is

ui(t) = −Ki

∑
j∈Ni

(ζi(t)− ζj(t)), (2)

where Ki is an nui × nζ gain matrix
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Problem

Closed-Loop Dynamics

define ξ := (ξ1, . . . , ξN), ζ := (ζ1, . . . , ζN) and ω := (ω1, . . . , ωN)

utilizing the Laplacian matrix L of the communication graph
G, we reach

ξ̇(t) = Aclξ(t) + Acldξ(t − d) + ω(t),

ζ = Cclξ,

with

Acl = diag(A1, . . . ,AN), Acld = [Acld
ij ],

Acld
ij = −lijBiKiCj , Ccl = diag(C1, . . . ,CN),
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Optimal Intermittent Feedback

Optimal Intermittent Feedback

t j
i ∈ T , i ∈ N – broadcasting instants of the jth agent

asynchronous communication
xi := (. . . , ζi − ζj , . . .), where i ∈ {1, . . . ,N} and j ∈ Ni

Problem

For each j ∈ {1, . . . ,N}, minimize the following cost function that
captures performance vs. energy trade-offs

E
ω

{ ∞∑
i=1

(γj)
i
[ t j

i∫
t j
i−1

(x>j Pjxj + u>j Rjuj)dt + Sj

︸ ︷︷ ︸
rj (xj ,uj ,τ

j
i )

]}
(3)

for the jth agent of MAS (1)-(2) over all sampling policies τ j
i and

for all initial conditions xj(t0) ∈ Rnxj .
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RL preliminaries

The goal of RL is to solve a stochastic discrete-time optimal
control problem

Markov decision process (MDP) (X ,A, f , ρ),
X ⊆ Rnx is the state space of the process,
A ⊆ Rna is the action space,
f : X ×A×X → [0,∞) is the transition probability function of
the process,
ρ : X ×A×X → R is the reward function
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RL preliminaries

A deterministic Markov Decision Process (MDP)

xk+1 = f (xk ,ak)

Reward function ρ : X × U → R

rk+1 = ρ(xk ,ak , xk+1)

The controller chooses actions according to its policy
h : X → U

ak = h(xk )
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RL preliminaries

The return R

Rh(x0) = E
{ ∞∑

k=0

γkρ(xk ,h(xk ), xk+1)
}

where γ ∈ (0, 1] is the discount factor

Any policy h∗ that attains the minima in this equation is optimal

V ∗(x0) := min
h

V h(x0), ∀x0.
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RL preliminaries

Q-learning

Q-functions Q : X ×A → R fix the initial action.
Once Q∗ is available, an optimal (greedy) policy can be
computed easily by selecting at each state an action with
the smallest optimal Q∗ value:

h∗(x) ∈ arg min
a

Q∗(x ,a).

The state value functions can be expressed in terms of
Q-functions

V h(x) = Qh(x ,h(x)),

V ∗(x) = min
a

Q∗(x ,a) = Q∗(x ,h∗(x)).
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RL preliminaries

Q-iteration

Bellman equations

Qh(x ,a) = E
{
ρ(x ,a, x ′) + γQh(x ′,h(x ′))

}
, (4)

Q∗(x ,a) = E
{
ρ(x ,a, x ′) + γmin

a′
Q∗(x ′,a′)

}
. (5)
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RL preliminaries

Policy

The optimal policy (greedy policy in Q∗)

h(x) ∈ arg max
u

Q∗(x ,u)

Policy evaluation
at every iteration l solving the Bellman equation for Qhl of the
current policy hl

Policy improvement

hl+1(x) ∈ arg max
u

Qhl (x ,u)

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI



LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

RL preliminaries

Policy

The optimal policy (greedy policy in Q∗)

h(x) ∈ arg max
u

Q∗(x ,u)

Policy evaluation
at every iteration l solving the Bellman equation for Qhl of the
current policy hl

Policy improvement

hl+1(x) ∈ arg max
u

Qhl (x ,u)

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI



LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

RL preliminaries

Policy

The optimal policy (greedy policy in Q∗)

h(x) ∈ arg max
u

Q∗(x ,u)

Policy evaluation
at every iteration l solving the Bellman equation for Qhl of the
current policy hl

Policy improvement

hl+1(x) ∈ arg max
u

Qhl (x ,u)

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI



LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

RL preliminaries

Approximation of Q

In continuous spaces, policy evaluation cannot be solved
exactly

Linearly parametrized Q-function approximator Q̂
n basis function (BFs) φ1, . . . , φn : X × U → R
n dimensional parameter vector θ

Q̂ =
n∑

l=1

φl(x ,u)θl = φT (x ,u)θ

where φ(x ,u) = [φ1(x ,u), . . . , φn(x ,u)]T .
Control action u is scalar which is bounded to an interval
U = [uL uH ].
Chebyshev polynomials of the first kind

ψ0(ū) = 1,
ψ1(ū) = ū,

ψj+1(ū) = 2ūψj(ū)− ψj−1(ū),
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RL preliminaries

Least Square Policy Iteration (LSPI)

define τ(ti) := ti+1 − ti

decision τ(ti) ∈ A is given by

τ(ti) = hκ
(
x(ti)

)
,

where

hκ
(
x(ti)

)
=

{
u.r.a. ∈ A every ε iterations,
hκ
(
x(ti)

)
otherwise,

where “u.r.a." stands for “uniformly chosen random action"
and yields exploration every ε steps while hκ(x(ti)) is the
policy obtained according to

hκ(x(ti)) ∈ arg max
u

Q̂
(
x(ti), τ(ti)

)
(6)
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RL preliminaries

Least Square Policy Iteration (LSPI)

ακ is updated every κ ≥ 1 steps from the projected Bellman
equation for model-free policy iteration

Γiακ = γΛiακ + zi ,

where γ is from (3) and

Γ0 = βΓI, Λ0 = 0, z0 = 0,

Γi = Γi−1 + φ
(
x(ti), τ(ti)

)
φ
(
x(ti−1), τ(ti−1)

)>
,

Λi = Λi−1 + φ
(
x(ti), τ(ti)

)
φ
(
x(ti),h(x(ti+1))

)>
,

zi = zi−1 + φ
(
x(ti), τ(ti)

)
r(ti),

where Γi , Λi and zi are updated at every iteration step i

new ακ improves the Q-function
improved policies (in the sense of Problem) are obtained
from (6)
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Convergence

Bellman equations (4) and (5) can be written as

Qh = T h(Qh), Q∗ = T (Q∗).

Contraction

Mapping T , as well as T h, is a contraction with factor γ < 1 in
L∞-norm

‖T (Q)− T (Q′)‖∞ ≤ γ ‖Q −Q′‖∞ .

T has the unique fixed point Q∗.
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Convergence

Q-iteration

An arbitrary initial Q-function Q0 can be iterated to reach Q∗:

Ql+1 = T (Ql),

which is known as the Q-iteration.

Contraction

‖Ql+1 −Q∗‖∞ ≤ γ ‖Ql −Q∗‖∞

Estimate of state-action value function in policy iteration

Qhk (x ,a) = E
{
ρ(x ,a, x ′) + γQhk (x ′,hk (x ′))

}
.
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Convergence

Approximated policy iteration converts to

αl+1 = (P ◦ T ◦ F)(αl),

where F(α) equals the right-hand side of

Q̂(x(ti), τ(ti)) = Φ>
(
x(ti), τ(ti)

)
ακ,

while the projection P(Q) equals ΦQ when orthonormal bases
(e.g., Chebyshev polynomials) are employed.

I. Palunko, 15.06.2021, Workshop on Control of Dynamical Systems LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI



LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI

Convergence

The expansiveness coefficient of P ◦ T ◦ F in

αl+1 = (P ◦ T ◦ F)(αl),

is upper bounded by

E := γ
√

2
nx +na

Mnx
b Nna

b .

Theorem

If E < 1, than the composite mapping P ◦ T ◦ F built upon
Chebyshev polynomials is a contraction, that is,

αl+1 = (P ◦ T ◦ F)(αl),

converges to a unique fixed point.
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Convergence

Near-Optimality Bounds

The approximate policy evaluation is accurate to within δ in the
L∞ sense, that is, if

‖Q̂hk −Qhk‖∞ ≤ δ, ∀k ∈ {1, 2, . . .},

then in the limit as k →∞ the following near-optimality bound
holds

lim sup
k→∞

‖Q̂hk −Q∗‖∞ ≤
2γδ

(1− γ)2 .

Moreover, if the sequence of obtained policies converges to
some h̃, then the following tighter bound holds:

‖Q̂h̃ −Q∗‖∞ ≤
2γδ

1− γ
.
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Validation

Agent Interconnections
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Validation

Crazyflie model identification

Transfer function form
X(s)

Φ(s)
=

KT

s(TT s + 1)
e−Td s

where KT = 0.944, TT = 0.297 and Td = 0.45

State-space form

ξ̇(t) = Aξ(t) + Bu(t) + ω[
ẋ(t)
ẍ(t)

]
=

[
0 1
0 −Ts

] [
x(t)
ẋ(t)

]
+

[
0
Ks

]
φ(t) + ω,

where Ks = 3.17 and Ts = 3.37
Communication delay is d = 0.45 s
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Validation
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Validation

MAS with Crazyflie - Experimental validation
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Thank you for your attention!
Questions?!
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